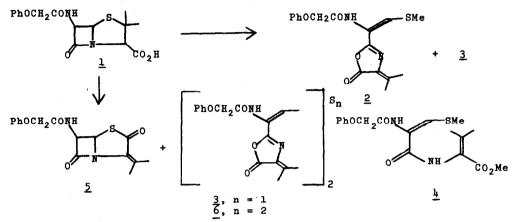
STRUCTURAL STUDIES ON PENICILLIN DERIVATIVES. PART III. REARRANGEMENT AND FRAGMENTATION OF PENICILLIN V

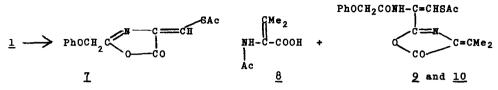

Stjepan Kukolja, R. D. G. Cooper, and Robert B. Morin The Lilly Research Laboratories, Eli Lilly and Company Indianapolis, Indiana 46206

(Received in USA 7 July 1969; received in UK for publication 21 July 1969)

We have found that the preparation of acyl derivatives of penicillin V involving the intermediacy of an activated carboxyl group often leads to new rearrangement products containing neither the β -lactam nor the thiazolidine ring systems. In an attempt to prepare the acyl azide of penicillin V (<u>1</u>) by treatment with triethylamine and methylchloroformate in DMF followed by sodium azide,¹ two new products (<u>2</u> and <u>3</u>) were isolated.² We have subsequently established that these are formed solely from the reaction of triethylamine and methylchloroformate with <u>1</u> in DMF.

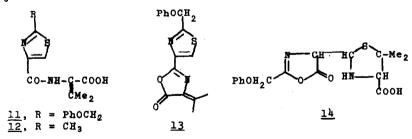
Compound 2, mp 114°, gives a peak in the mass spectrum at m/e 346, corresponding to C17H18N20LS (found 346.099, requires 346.099), and major fragmentation peaks at m/e 299 (M⁺-SMe), 271 (M⁺-SMe, -CO), 202 (M⁺-SMe, -CO, -NHCLH₆), 197 (M⁺-PhOCH, CONH), and 174 (PhOCH, CONHCH=CH⁺). The ir spectrum shows peaks at 3370, 1802 (sh), 1776, 1701, 1667, 1600, and 1492 cm^{-1} (CHCl₃), seemingly indicating the presence of a β -lactam ring; however the extended uv chromophore [λ_{max} (EtOH) 335, 275, and 269 mµ, ϵ = 30,200, 13,200, and 7,700; λ_{max} $(EtOH/OH^-)$ 285 mµ, $\epsilon = 15,000$ and nmr spectrum³ [2.18 (s,3H), 2.32 (s,3H), 2.47 (s,3H), 4.63 (s,2H), 6.8-7.5 (m,6H), and 8.01 (s,1H)] showed no B-lactam molety and suggested 2 as the structure. Treatment of 2 with methanolic sodium hydroxide gave the methyl ester $\frac{1}{2}$, mp 153°. The mass spectrum showed a molecular ion at m/e 378 ($C_{1R}H_{2}$, N₂O₅S) and major fragmentation peaks at 331 (M^+-SMe) , 271 (M^+-SMe) , -COOMe), and 250 $(M^+-NH \not\leftarrow CO_2Me)$. Compound <u>4</u> had the following spectral properties: λ_{max} (EtOH) 285 ($\varepsilon = 15,000$); ir v_{max}^{Nujol} 3300, 1700, 1670, and 1490 cm⁻¹; nmr 1.80 (s,3H), 2.10 (s,3H), 2.37 (s,3H), 3.67 (s,3H), 4.00 (s,3H), 6.8-7.5 (m,6H), 7.83 (s,1H, exchanges with D₂O), and 8.00 (s,1H, exchanges with D₂0). This data suggests that $\frac{1}{2}$ is the structure of the

NaOH/MeOH product, thus also establishing the presence of the oxazolone ring in 2. Further evidence for the oxazolone ring was provided by the ir spectrum of 2 as it is known⁴ that the ir spectra of 4-alkylidene-5(4)-oxazolones have maxima of 1795, 1764, 1667, and 1626 cm⁻¹, whereas the 4-amino substituted derivatives have peaks at 1727, 1623, and 1605 cm⁻¹.



The second product was identical with 3, one of two substances, 3 and 6, we had isolated in a preparation of phenoxymethyl anhydropenicillin (5) according to the procedure reported for phenoxyethyl anhydropenicillin.⁵ The sulfide (3), $C_{32}H_{30}N_{4}O_8S$, has mp 205-206.5°; λ_{max} (EtOH) 366 mµ, $\epsilon = 31,200$; ir (CHCl₃) 1800, 1710, 1668, 1600, and 1515 cm⁻¹; and nmr (CDCl₃) 2.19 (s,3H); 2.34 (s,3H), 4.64 (s,2H), 7.0 (m,5H), 7.41 (s,1H), and 8.35 (s,NH). Compound 6, mp 135-138°, is tentatively identified as a symmetrical disulfide on the basis of correct analysis for $C_{32}H_{30}N_{4}O_8S_2$: λ_{max} (EtOH) 332, 375 mµ, $\epsilon =$ 15,500, 12,100; ir (CHCl₃) 1790, 1695, 1668, 1600, and 1515 cm⁻¹; and fragmentation in the mass spectrum.

The "dimer" reported by S. Wolfe and co-workers⁵ is probably the sulfide derivative corresponding to $\underline{3}$. Compound $\underline{3}$ is often the major product in both the anhydropenicillin and the methyl chloroformate-triethylamine reaction, the yields varying with the exact experimental conditions.


The reaction of penicillin V ($\underline{1}$) with acetic anhydride at 120-130° for 45 min afforded a mixture from which four compounds were isolated by chromatography over silica gel. The simplest of these was N-acetyl dehydrovaline ($\underline{8}$), identi-

cal with a synthetic sample.⁶ The second was 4-acetyl-thiomethylene-2phenoxymethyl-5-oxazolone ($\underline{7}$), C₁₃H₁₁NO₄S, mp 110-111°; structural assignment

was made on the basis of elemental analysis and physical data $[\lambda_{max}$ (EtOH) 365 and 320 mµ, $\varepsilon = 11,200$ and 8,400; ir (CHCl₃) 1803, 1720, and 1648 cm⁻¹; nmr (CDCl₃) 2.32 (s,3H), 4.8 (s,2H), 7.0 (m,5H), and 8.0 (s,1H).

The remaining two compounds, 9 and 10, mp 172-174° and 185-186°, were isomeric, having empirical formula $C_{18}H_{18}N_2O_5S$ (m/e 374). Structural studies were carried out primarily with the lower melting isomer 9, formed in considerably greater yield. The lack of uncoupled aliphatic and olefinic proton signals in the nmr spectrum [(TFAd₁) 2.37 (s,3H), 2.55 (s,3H), 2.61 (s,3H), 4.88 (s,2H), 7.1 (m,5H), and 9.00 (s,1H)] and the extended uv chromophore [λ_{max} (EtOH) 230 mµ, ϵ = 28,800)] indicate a large degree of unsaturation. The presence of an S-acetyl group is indicated by the most predominant ion in the mass spectrum (m/e 299, M⁺-SAc) and the oxazolone by the 1800 cm⁻¹ (Nujol) peak in the ir spectrum.⁴ Structure 9 is consistent with this data and is confirmed by acid hydrolysis to thiazole (<u>11</u>), $C_{16}H_{16}N_2O_4S$, mp 178-179°, and thiazoleoxazolone (<u>13</u>), $C_{16}H_{14}N_2O_3S$, mp 139-140°, and alkaline hydrolysis to <u>11</u> and <u>12</u>, $C_{10}H_{12}N_2O_3S$, mp 198-199°.

The minor isomer has ir and mass spectra nearly identical with those of 2, an nmr spectrum similar except for the position of the olefinic proton [8.80 (s,1H)], and an uv maximum shifted somewhat to longer wave length $[\lambda_{max}$ (EtOH) 332 mu, $\epsilon = 20,200$]. A reasonable explanation would be that this is

<u>10</u>, the geometrical isomer of \underline{g} . This compound also gives the thiazole-acid (<u>11</u>) on treatment with acid. The thiazole <u>11</u> was also obtained from an acid hydrolysis of the disulfide <u>6</u>.

Reaction of penicillin G with acetic anhydride was reported in the penicillin monograph,⁸ and the appearance of the absorption maximum at 320 m_µ was noticed. From the present work we believe that the corresponding derivative of <u>9</u> was formed. These examples indicate that the rearrangement of penicillin to oxazolones is a general reaction.

A plausible mechanism for the formation of $\underline{2}$ and $\underline{9}$ could be a double β elimination reaction with simultaneous or subsequent methylation or acetylation of the sulfhydryl group and cyclization of the neighboring amide to the oxazolone. Compounds $\underline{3}$ and $\underline{6}$ are formed by a similar mechanism except that the sulfhydryl group is converted to the sulfide and disulfide. Phenoxymethyl anhydropenicillin is thought to derive from penicillin V by a β -elimination and cyclization to the thiolactone. Fragmentation of penicillin V with acetic anhydride to compounds $\underline{7}$ and $\underline{6}$ can be envisioned as a double β -elimination on the oxazolone-thiasolidine ($\underline{14}$), resulting from rearrangement of penicillin V.

<u>Acknowledgments</u>--We wish to thank Dr. W. H. W. Lunn and Dr. B. G. Jackson for valuable discussions and the physical chemistry group of these laboratories for the analytical and spectral data.

REFERENCES

- Y. G. Perron, L. G. Crast, J. M. Essery, R. R. Fraser, J. C. Godfrey, C. T. Holdrege, W. F. Minor, M. E. Neubert, R. A. Partyka, and L. C. Cheney, <u>J. Med. Chem.</u>, <u>I</u>, 483 (1964).
- 2. Satisfactory analytical data were obtained for all new compounds.
- 3. Nmr spectra were recorded on a Varian A60 in deuterochloroform using TMS as internal reference and are reported as δ values.
- 4. H. T. Clarke, J. R. Johnson, and R. Robinson, Eds., "The Chemistry of Penicillin," Princeton University Press, Princeton, N. J., 1949, p. 412.
- S. Wolfe, J. C. Godfrey, C. T. Holdrege, and Y. G. Perron, <u>Can. J. Chem.</u>, <u>46</u>, 2549 (1968).
- (a) Th. Wieland, G. Ohnacker, and W. Ziegler, <u>Chem. Ber.</u>, <u>90</u>, 194 (1957);
 (b) ref. 4, p. 465.
- 7. See ref. 4, pp. 430 and 758.
- 8. See ref. 4, p. 168.

3384